Feature-based Human Face Detection Feature-based Human Face Detection
نویسندگان
چکیده
Human face detection has always been an important problem for face, expression and gesture recognition. Though numerous attempts have been made to detect and localize faces, these approaches have made assumptions that restrict their extension to more general cases. We identify that the key factor in a generic and robust system is that of using a large amount of image evidence, related and reinforced by model knowledge through a probabilistic framework. In this paper, we propose a feature-based algorithm for detecting faces that is suuciently generic and is also easily extensible to cope with more demanding variations of the imaging conditions. The algorithm detects feature points from the image using spatial lters and groups them into face candidates using geometric and gray level constraints. A probabilistic framework is then used to reinforce probabilities and to evaluate the likelihood of the candidate as a face. We provide results to support the validity of the approach and demonstrate its capability to detect faces under diierent scale, orientation and viewpoint.
منابع مشابه
Determining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملThe Mechanical Design of Drowsiness Detection Using Color Based Features
This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملA New Face Detection Technique using 2D DCT and Self Organizing Feature Map
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the twodimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised...
متن کاملExample-based Learning for View-based Human Face Detection
Finding human faces automatically in an image is a diicult yet important rst step to a fully automatic face recognition system. It is also an interesting academic problem because a successful face detection system can provide valuable insight on how one might approach other similar object and pattern detection problems. This paper presents an example-based learning approach for locating vertica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996